SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

- Course Title: WELDING METALLURGY
- MET 110-2 Code No.:
- Program: WELDING & FABRICATING
- Semester: ONE
- AUGUST 22, 1983 Date:
- Author: DENIS SOCCHIA

New: Revision

APPROVED:

Chairperson

Date

WELDING METALLURGY

Course Name

MET 110-2 Course Number

PHILOSOPHY/GOALS:

The course is designed to give students a general overview of the many practical considerations demanded of today's tradesman in the application of his talents.

Therefore, students should have a reasonable understanding of the subject areas so to be able to assist in the selection of:

1. Base Materials

2. Welding Procedures

3. Post-Weld Heat Treatment

In short, it is intended that the student will be <u>constantly</u> relating the subject areas to his shop practices while in training.

TEXTBOOK(S):

Metals and How to Weld Them — Lincoln Modern Welding - Althouse, Turnquist, Bowditch The Principles of Cold Cracking Control in Welds — Graville Metallurgy for Engineers — Library Welding Metallury (VI = Fundamentals; V2 = Technology) — Library Weldability of Steels — Library

COURSE OUTLINE FOR WELDING METALLURGY

SUBJECT AREAS		TIME
1.	Introduction & Course Outline	2 hours
2.	Mechanical Properties of Metals	4 hours
3.	The Metals We Use	4 hours
4.	Classification of Construction Grade Steels	4 hours
5.	Iron, Iron Carbide System	4 hours
6.	Heat Treatment Techniques	4 hours
7.	Cold Cracking of Welded Joints	4 hours
TOTAL INSTRUCTION TIME		26 hours
TOTAL TESTING TIME		2 hours
TWO WRITTEN REPORTS		Homework
FINAL TOTAL (1 Semester)		28 hours

WELDING METALLURGY

SUBJECT OUTLINE

1. Introduction and Course Outline

2 hours

4 hours

- explanation of marking system and overall evaluation methods (i.e., tests, spot tests, reports)
- texts used in course and required by student
- resource materials available in library
- summary of major topic areas
- brief overview on the production of iron & steel
- major differences between iron and steel in terms of
 a) chemical composition
 b) possible use

2. Mechanical Properties of Metals

- development and explanation of stress-strain curve
- development and definition of:
 - a) yield point and yield strength
 - b) ultimate tensile strength
 - c) ductility as % elongation and % reduction of area
 - d) toughness as a combination of ductility and thermal conductivity
 - e) hardness vs. ductility
 - f) hardness vs. tensile strength
 - g) impact strength

3. The Metals We Use

4 hours

- explanation of the following common groups of metals based on a) chemical analysis b) mechanical properties
- provide some general uses for these metals:
 <u>COMMON METALS</u>
 plain carbon steels, low alloy steels, tool steels, stainless steels, cast irons, aluminum
- 4. Classification of Construction Grade Steels

4 hours

- explain and define the three major classification systems in current use
 - a) S.A.E. System: Based on chemical analysis
 - b) A.S.T.M. System: Based on Mechanical Properties
 - c) C.S.A. System: Based on Mechanical Properties
- explain general application of above systems when ordering or specifying base metals

- explain and develop the theoretical relationship between iron and carbon for various temperatures and composition
- define and explain the following phase changes in relation to the over-all iron, iron carbide system:
 - a) melting , freezing points
 - b) F.C.C. and B.C.C. structures
 - c) Austenite, Pearlite, Cementite, Ferrite, Martensite
- develop a general understanding of the iron, iron-carbide system as it will be involved in welding and heat treating

Heat Treatment Techniques

- define and explain the following heat treatment terms:
 - a) anneal b) normalize c) spheordize d) quench harden
 - e) temper f) stress relieve
- relate the above terms to the iron, iron-carbide system as well as the welding of carbon steels and cast irons
- demonstrate normalize, quench harden and temper in shop and relate to hardness and ductility

Cold Cracking of Welded Joints

- define and explain the following points:
 - a) welding as a crude form of heat treatment
 - b) how heat imput is calculated
 - c) how cooling rates are calculated
- explain how cold cracking in welded structures can result from: a) microstructure
 - b) hydrogen
 - c) admixture
 - d) residual stresses

4 hours

4 hours